Search for: rheumatoid arthritis methotrexate autoimmune disease biomarker gene expression GWAS HLA genes non-HLA genes
ID | PMID | Title | PublicationDate | abstract |
---|---|---|---|---|
19191755 | Signaling networks that control the lineage commitment and differentiation of bone cells. | 2009 | Osteoblasts and osteoclasts are the two major bone cells involved in the bone remodeling process. Osteoblasts are responsible for bone formation while osteoclasts are the bone-resorbing cells. The major event that triggers osteogenesis and bone remodeling is the transition of mesenchymal stem cells into differentiating osteoblast cells and monocyte/macrophage precursors into differentiating osteoclasts. Imbalance in differentiation and function of these two cell types will result in skeletal diseases such as osteoporosis, Paget's disease, rheumatoid arthritis, osteopetrosis, periodontal disease, and bone cancer metastases. Osteoblast and osteoclast commitment and differentiation are controlled by complex activities involving signal transduction and transcriptional regulation of gene expression. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of the multiple factors and signaling networks that control the differentiation process at a molecular level. This review summarizes recent advances in studies of signaling transduction pathways and transcriptional regulation of osteoblast and osteoclast cell lineage commitment and differentiation. Understanding the signaling networks that control the commitment and differentiation of bone cells will not only expand our basic understanding of the molecular mechanisms of skeletal development but will also aid our ability to develop therapeutic means of intervention in skeletal diseases. | |
19075187 | A critical role for DAP10 and DAP12 in CD8+ T cell-mediated tissue damage in large granula | 2009 Apr 2 | Large granular lymphocyte (LGL) leukemia, or LGLL, is characterized by increased numbers of circulating clonal LGL cells in association with neutropenia, anemia, rheumatoid arthritis, and pulmonary artery hypertension (PAH). Emerging evidence suggests that LGLL cells with a CD8(+)CD28(null) phenotype induce these clinical manifestations through direct destruction of normal tissue. Compared with CD8(+)CD28(null) T cells from healthy controls, CD8(+)CD28(null) T cells from LGLL patients have acquired the ability to directly lyse pulmonary artery endothelial cells and human synovial cells. Here, we show that LGLL cells from patients possess enhanced cytotoxic characteristics and express elevated levels of activating natural killer receptors as well as their signaling partners, DAP10 and DAP12. Moreover, downstream targets of DAP10 and DAP12 are constitutively activated in LGLL cells, and expression of dominant-negative DAP10 and DAP12 dramatically reduces their lytic capacity. These are the first results to show that activating NKR-ligand interactions play a critical role in initiating the DAP10 and DAP12 signaling events that lead to enhanced lytic potential of LGLL cells. Results shown suggest that inhibitors of DAP10 and DAP12 or other proteins involved in this signaling pathway will be attractive therapeutic targets for the treatment of LGLL and other autoimmune diseases and syndromes. | |
19854161 | Transcriptional and post-transcriptional regulation of iNOS expression in human chondrocyt | 2010 Mar 1 | Chondrocytes are important for the development and maintenance of articular cartilage. However, both in osteoarthritis (OA) and rheumatoid arthritis (RA) chondrocytes are involved in the process of cartilage degradation and synthesize important immunomodulatory mediators, including nitric oxide (NO) generated by the inducible NO synthase (iNOS). To uncover the role of iNOS in the pathomechanisms of OA and RA, we analyzed the regulation of iNOS expression using immortalized human chondrocytes as a reproducible model. In C-28/I2 chondrocytes, iNOS expression was associated with the expression of the chondrocyte phenotype. Peak induction by a cytokine cocktail occurred between 6 and 8h and declined by 24h. Inhibition of p38MAPK, NF-kappaB and the JAK2-STAT-1alpha pathways resulted in a reduction of iNOS expression. In contrast to other cell types, the cytokine-mediated induction of the human iNOS promoter paralleled the induction rate of the iNOS mRNA expression in C-28/I2 chondrocytes. However, in addition post-transcriptional regulation of iNOS expression by the RNA binding protein KSRP seems to operate in these cells. As seen in other chondrocyte models, glucocorticoids were not able to inhibit cytokine-induced iNOS expression in C-28/I2 cells, due to the lack of the glucocorticoid receptor mRNA expression. In this model of glucocorticoid-resistance, the new fungal anti-inflammatory compound S-curvularin was able to inhibit cytokine-induced iNOS expression and iNOS-dependent NO-production. In summary, we demonstrate for the first time that differentiated human immortalized C-28/I2 chondrocytes are a representative cell culture model to investigate iNOS gene expression in human joint diseases. | |
21249762 | (64)Cu-1,4,7,10-Tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid-Lys(Cy5.5 | 2004 | Integrins are a family of heterodimeric glycoproteins on cell surfaces that mediate diverse biological events involving cell–cell and cell–matrix interactions (1). Integrins consist of an α and a β subunit and are important for cell adhesion and signal transduction. The α(v)β(3) integrin is the most prominent receptor affecting tumor growth, tumor invasiveness, metastasis, tumor-induced angiogenesis, inflammation, osteoporosis, and rheumatoid arthritis (2-7). Expression of the α(v)β(3) integrin is strong on tumor cells and activated endothelial cells, whereas expression is weak on resting endothelial cells and most normal tissues. The α(v)β(3) antagonists are being studied as antitumor and antiangiogenic agents, and the agonists are being studied as angiogenic agents for coronary angiogenesis (6, 8, 9). The peptide sequence Arg-Gly-Asp (RGD) has been identified as a recognition motif used by extracellular matrix proteins (vitronectin, fibrinogen, laminin, and collagen) to bind to a variety of integrins, including α(v)β(3). Various radiolabeled ligands have been introduced for imaging of tumors and tumor angiogenesis (10). Most cyclic RGD peptides are composed of five amino acids. Haubner et al. (11) reported that various cyclic RGD peptides exhibit selective inhibition of binding to α(v)β(3) integrin (expressed as 50% inhibitory concentration (IC(50)), 7–40 nM) but not to α(v)β(5) (IC(50), 600–4,000 nM) or α(IIb)β(3) (IC(50), 700–5,000 nM) integrins. Various radiolabeled cyclic RGD peptides have been found to have high accumulation in tumors in nude mice (12). Only one cyclic RGD peptide used for imaging, [(18)F]fluoropropionyl-galacto-c(Arg-Gly-Asp-d-Phe-Lys) ([(18)F]-galacto-RGD), has been investigated for measuring expression of the α(v)β(3) integrin in cancer patients with tumors. However, [(18)F]-galacto-RGD has been shown to have low tumor accumulation and low signal/background ratios in humans. Cystine knot peptides (knottins) share a common disulfide-bonded framework and a triple-stranded β-sheet fold (13). The integrin-binding RGD motif was grafted into a knottin from the trypsin inhibitor II of the squirting cucumber plant (Ecballium elaterium). Knottin 2.5D (with three disulfide bonds (GCPQGRGDWAPTSCSQDSDCLAGCVCGPNGFCG-NH(2))) was identified from a series of genetically engineered knottin peptides to exhibit nanomolar binding to the α(v)β(3), α(v)β(5), and α(5)β(1) integrin receptors (14, 15). Cy5.5 and (64)Cu-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid ((64)Cu-DOTA), were both chemically conjugated to the knottin N-terminus using a peptide-based linker, Lys-Gly-Gly-Tyr (16). The resulting agent, (64)Cu-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid-Lys(Cy5.5)-Gly-Gly-Tyr-knottin 2.5D ((64)Cu-DOTA/Cy5.5-2.5D), has been evaluated for positron emission tomography (PET) and optical imaging of tumor xenografts in mice. | |
20471506 | Polymorphisms in the macrophage migration inhibitory factor gene and bone loss in postmeno | 2010 Aug | Osteoporosis is a severe condition in postmenopausal women and a common cause of fracture. Osteoporosis is a complex disease with a strong genetic impact, but susceptibility is determined by many genes with modest effects and environmental factors. Only a handful of genes consistently associated with osteoporosis have been identified so far. Inflammation affects bone metabolism by interfering with the interplay between bone resorption and formation, and many inflammatory mediators are involved in natural bone remodeling. The cytokine macrophage migration inhibitory factor (MIF) has been shown to affect bone density in rodents, and polymorphisms in the human MIF promoter are associated with inflammatory disorders such as rheumatoid arthritis. We investigated the association of polymorphisms in the MIF gene with bone mineral density (BMD) and bone loss in 1002 elderly women using MIF promoter polymorphisms MIF-CATT(5-8) and rs755622(G/C) located -794 and -173 bp upstream of the transcriptional start site. Bone loss was estimated both by the change in BMD over 5 years and by the levels of bone resorption markers in serum measured at four occasions during a 5-year period. The MIF-CATT(7)/rs755622(C) haplotype was associated with increased rate of bone loss during 5 years at the femoral neck (p<0.05) and total hip (p<0.05). In addition, the MIF-CATT(7)/rs755622(C) haplotype carriers had higher levels of the bone turnover marker serum C-terminal cross-linking telopeptide of type I collagen (S-CTX-I, p<0.01) during the 5 year follow-up period. There was no association between MIF-CATT(7)/rs755622(C) and baseline BMD at femoral neck, total hip or lumbar spine. We conclude that MIF promoter polymorphisms have modest effects on bone remodeling and are associated with the rate of bone loss in elderly women. | |
19877182 | B-cell depletion with anti-CD20 ameliorates autoimmune cholangitis but exacerbates colitis | 2009 Dec | The treatment of primary biliary cirrhosis (PBC) with conventional immunosuppressive drugs has been relatively disappointing and there have been few efforts in defining a role for the newer biological agents useful in rheumatoid arthritis and other systemic autoimmune diseases. In this study we took advantage of transforming growth factor-beta (TGF-beta) receptor II dominant negative (dnTGF-betaRII) mice, a mouse model of autoimmune cholangitis, to address the therapeutic efficacy of B-cell depletion using anti-CD20. Mice were treated at either 4-6 weeks of age or beginning at 20-22 weeks of age with intraperitoneal injections of anti-CD20 every 2 weeks. We quantitated B-cell levels in all mice as well as antimitochondrial antibodies (AMA), serum and hepatic levels of proinflammatory cytokines, and histopathology of liver and colon. In mice whose treatment was initiated at 4-6 weeks of age, anti-CD20 therapy demonstrated a significantly lower incidence of liver inflammation associated with reduced numbers of activated hepatic CD8(+) T cells. However, colon inflammation was exacerbated. In contrast, in mice treated at 20-22 weeks of age, anti-CD20 therapy had relatively little effect on either liver or colon disease. As expected, all treated animals had reduced levels of B cells, absence of AMA, and increased levels in sera of tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6), and chemokine (C-C motif) ligand (CCL2) (monocyte chemoattractant protein 1 [MCP-1]). CONCLUSION: These data suggest potential usage of anti-CD20 in early PBC resistant to other modalities, but raise a cautionary note regarding the use of anti-CD20 in inflammatory bowel disease. | |
19457575 | Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression. | 2010 Aug | Cannabinoids are a group of compounds present in Cannabis plant (Cannabis sativa L.). They mediate their physiological and behavioral effects by activating specific cannabinoid receptors. With the recent discovery of the cannabinoid receptors (CB1 and CB2) and the endocannabinoid system, research in this field has expanded exponentially. Cannabinoids have been shown to act as potent immunosuppressive and anti-inflammatory agents and have been shown to mediate beneficial effects in a wide range of immune-mediated diseases such as multiple sclerosis, diabetes, septic shock, rheumatoid arthritis, and allergic asthma. Cannabinoid receptor 1 (CB1) is mainly expressed on the cells of the central nervous system as well as in the periphery. In contrast, cannabinoid receptor 2 (CB2) is predominantly expressed on immune cells. The precise mechanisms through which cannabinoids mediate immunosuppression is only now beginning to be understood and can be broadly categorized into four pathways: apoptosis, inhibition of proliferation, suppression of cytokine and chemokine production and induction of T regulatory cells (T regs). Studies from our laboratory have focused on mechanisms of apoptosis induction by natural and synthetic cannabinoids through activation of CB2 receptors. In this review, we will focus on apoptotic mechanisms of immunosuppression mediated by cannabinoids on different immune cell populations and discuss how activation of CB2 provides a novel therapeutic modality against inflammatory and autoimmune diseases as well as malignancies of the immune system, without exerting the untoward psychotropic effects. | |
21143809 | Inhibition of the NEMO/IKKβ association complex formation, a novel mechanism associated w | 2010 Dec 2 | BACKGROUND: Nuclear Factor kappa B (NF-κB) is a transcription factor involved in the regulation of cell signaling responses and is a key regulator of cellular processes involved in the immune response, differentiation, cell proliferation, and apoptosis. The constitutive activation of NF-κB contributes to multiple cellular outcomes and pathophysiological conditions such as rheumatoid arthritis, asthma, inflammatory bowel disease, AIDS and cancer. Thus there lies a huge therapeutic potential beneath inhibition of NF-κB signalling pathway for reducing these chronic ailments. Withania somnifera, a reputed herb in ayurvedic medicine, comprises a large number of steroidal lactones known as withanolides which show plethora of pharmacological activities like anti- inflammatory, antitumor, antibacterial, antioxidant, anticonvulsive, and immunosuppressive. Though a few studies have been reported depicting the effect of WA (withaferin A) on suppression of NF-κB activation, the mechanism behind this is still eluding the researchers. The study conducted here is an attempt to explore NF-κB signalling pathway modulating capability of Withania somnifera's major constituent WA and to elucidate its possible mode of action using molecular docking and molecular dynamics simulations studies. RESULTS: Formation of active IKK (IκB kinase) complex comprising NEMO (NF-κB Essential Modulator) and IKKβ subunits is one of the essential steps for NF-κB signalling pathway, non-assembly of which can lead to prevention of the above mentioned vulnerable disorders. As observed from our semi-flexible docking analysis, WA forms strong intermolecular interactions with the NEMO chains thus building steric as well as thermodynamic barriers to the incoming IKKβ subunits, which in turn pave way to naive complex formation capability of NEMO with IKKβ. Docking of WA into active NEMO/IKKβ complex using flexible docking in which key residues of the complex were kept flexible also suggest the disruption of the active complex. Thus the molecular docking analysis of WA into NEMO and active NEMO/IKKβ complex conducted in this study provides significant evidence in support of the proposed mechanism of NF-κB activation suppression by inhibition or disruption of active NEMO/IKKβ complex formation being accounted by non-assembly of the catalytically active NEMO/IKKβ complex. Results from the molecular dynamics simulations in water show that the trajectories of the native protein and the protein complexed with WA are stable over a considerably long time period of 2.6 ns. CONCLUSIONS: NF-κB is one of the most attractive topics in current biological, biochemical, and pharmacological research, and in the recent years the number of studies focusing on its inhibition/regulation has increased manifolds. Small ligands (both natural and synthetic) are gaining particular attention in this context. Our computational analysis provided a rationalization of the ability of naturally occurring withaferin A to alter the NF-κB signalling pathway along with its proposed mode of inhibition of the pathway. The absence of active IKK multisubunit complex would prevent degradation of IκB proteins, as the IκB proteins would not get phosphorylated by IKK. This would ultimately lead to non-release of NF-κB and its further translocation to the nucleus thus arresting its nefarious acts. Conclusively our results strongly suggest that withaferin A is a potent anticancer agent as ascertained by its potent NF-κB modulating capability. Moreover the present MD simulations made clear the dynamic structural stability of NEMO/IKKβ in complex with the drug WA, together with the inhibitory mechanism. | |
21088048 | Ron receptor deficient alveolar myeloid cells exacerbate LPS-induced acute lung injury in | 2011 Dec | Previous studies have shown that the Ron receptor tyrosine kinase is an important regulator of the acute lung inflammatory response induced by intranasal administration of bacterial LPS. Compared to wild-type mice, complete loss of the Ron receptor in all cell types in vivo was associated with increased lung damage as determined by histological analyses and several markers of lung injury including increases in pro-inflammatory cytokines such as TNF-α. Tumor-necrosis factor-α is a multifunctional cytokine secreted by macrophages, which plays a major role in inflammation and is a central mediator of several disease states including rheumatoid arthritis and sepsis. Based on increased TNF-α production observed in the Ron-deficient mice, we hypothesized that Ron receptor function in the inflammatory cell compartment is essential for the regulating lung injury in vivo. To test this hypothesis, we generated myeloid lineage-specific Ron-deficient mice. In this study, we report that loss of Ron signaling selectively in myeloid cells results in increased lung injury following intranasal administration of LPS as measured by increases in TNF-α production, ensuing neutrophil accumulation and increased lung histopathology. These findings corroborate the role of Ron receptor tyrosine kinase as a negative regulator of inflammation and further demonstrate the in vivo significance of Ron signaling selectively in myeloid cells as a major regulator of this response in vivo. These data authenticate Ron as a potential target in innate immunity and TNF-α-mediated pathologies. | |
20703218 | Novel functions for NFκB: inhibition of bone formation. | 2010 Oct | NFκB is a family of transcription factors involved in immunity and the normal functioning of many tissues. It has been well studied in osteoclasts, and new data indicate an important role for NFκB in the negative regulation of bone formation. In this article, we discuss how NFκB activation affects osteoblast function and bone formation. In particular, we describe how reduced NFκB activity in osteoblasts results in an increase in bone formation via enhanced c-Jun N-terminal kinase (JNK) activity, which regulates FOSL1 (also known as Fra1) expression. Furthermore, we discuss how estrogen and NFκB crosstalk in osteoblasts acts to oppositely regulate bone formation. Future NFκB-targeting treatments for osteoporosis, rheumatoid arthritis and other inflammatory bone diseases could lead to increased bone formation concurrent with decreased bone resorption. | |
21057037 | Prevotella intermedia induces prostaglandin E2 via multiple signaling pathways. | 2011 Jan | Prostaglandin E(2) (PGE(2)) plays important roles in the bone resorption of inflammatory diseases such as rheumatoid arthritis and periodontitis via specific prostaglandin receptors (i.e., EP1-EP4). In this study, the authors examined whether Prevotella intermedia regulates PGE(2) production and EP expression in human periodontal ligament fibroblasts (hPDLs); they also explored the potential signaling pathways involved in PGE(2) production. P. intermedia induced PGE(2) production and cyclooxygenase-2 (COX-2) expression in a dose- and time-dependent manner. Indomethacin and NS-398 completely abrogated the P. intermedia-induced PGE(2) production without modulating COX-2 expression. Specific inhibitors of extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, phosphatidylinositol 3-kinase, and protein kinase C--but not c-AMP and protein kinase A--significantly attenuated the P. intermedia-induced COX-2 and PGE(2) expression. P. intermedia reduced EP1 expression in a concentration- and time-dependent manner. The results indicate that the COX-2-dependent induction of PGE(2) by P. intermedia in hPDLs is mediated by multiple signaling pathways. | |
20465565 | Interleukin-7 promotes the survival of human CD4+ effector/memory T cells by up-regulating | 2010 Jul | Interleukin-7 (IL-7) is a crucial cytokine involved in T-cell survival and development but its signalling in human T cells, particularly in effector/memory T cells, is poorly documented. In this study, we found that IL-7 protects human CD4(+) effector/memory T cells from apoptosis induced upon the absence of stimulation and cytokines. We show that IL-7 up-regulates not only Bcl-2 but also Bcl-xL and Mcl-1 as well. Interleukin-7-induced activation of the janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway is sufficient for cell survival and up-regulation of Bcl-2 proteins. In contrast to previous studies with naive T cells, we found that IL-7 is a weak activator of the phosphatidylinositol 3 kinase (PI3K)/AKT (also referred as protein kinase B) pathway and IL-7-mediated cell survival occurs independently from the PI3K/AKT pathway as well as from activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. Considering the contribution of both IL-7 and CD4(+) effector/memory T cells to the pathogenesis of autoimmune diseases such as rheumatoid arthritis and colitis, our study suggests that IL-7 can contribute to these diseases by promoting cell survival. A further understanding of the mechanisms of IL-7 signalling in effector/memory T cells associated with autoimmune inflammatory diseases may lead to potential new therapeutic avenues. | |
20331464 | Anti-thymocyte globulin plus etanercept as therapy for myelodysplastic syndromes (MDS): a | 2010 Jun | Immunosuppressive therapies have proven valuable in treating patients with myelodysplastic syndromes (MDS). We evaluated the combination of equine anti-thymocyte globulin (ATGAM) and the soluble tumour necrosis factor receptor, etanercept (Enbrel), in a phase II trial. Twenty-five patients with MDS [4-refractory anaemia (RA), 2-RA with ring sideroblasts, 15-refractory cytopenia with multilineage dysplasia (RCMD), 3-RCMD and ring sideroblasts, 1-RA with excess blasts type 1] in International Prognostic Staging System risk groups low (n = 11) or intermediate-1 (n = 14) were enrolled. All patients were platelet or red cell transfusion-dependent. Nineteen patients completed therapy with ATG at 40 mg/kg per day for four consecutive days, followed by etanercept, 25 mg subcutaneous twice a week for 2 weeks, every month for 4 months. Thirteen patients had haematological improvement (HI)-erythroid, 2 HI-neutrophil, and 6 HI-platelet. One patient with a co-existing diagnosis of multiple sclerosis and rheumatoid arthritis had a complete remission. The overall response by intent to treat analysis among the 25 patients was 56% (95% confidence interval 35-56%). Four patients did not complete their first course of therapy and one patient did not survive to the 8-week post-treatment assessment. Among patients who completed treatment and survived to the 8-week assessment, 70% had at least haematological responses lasting for at least 5 to more than 36 months. Thus, combination therapy with ATG and etanercept was active and safe in patients with MDS. | |
19877080 | Identification of RGS1 as a candidate biomarker for undifferentiated spondylarthritis by g | 2009 Nov | OBJECTIVE: To compare gene expression profiles between ankylosing spondylitis (AS) and undifferentiated spondylarthritis (uSpA) patients with inflammatory low back pain. METHODS: Peripheral blood mononuclear cells (PBMCs) from patients with AS, patients with uSpA, and healthy subjects were screened using genome-wide microarrays, followed by validation by real-time polymerase chain reaction (PCR). RESULTS: Microarray profiling and real-time PCR assays showed only minor differences between AS patients and healthy subjects. In contrast, 20 genes were strikingly more highly expressed in uSpA patients. Regulator of G protein signaling 1 (RGS1) was identified as the most useful biomarker for distinguishing uSpA patients, and to a lesser extent AS patients, from control subjects (P = 2.3 x 10(-7) and 6.7 x 10(-3), respectively). These findings were verified in an independent cohort that also included patients with rheumatoid arthritis and patients with mechanical low back pain. The receiver operating characteristic area under the curve values in the first and second cohorts of uSpA patients were 0.99 and 0.93, respectively (P = 1 x 10(-4)). To evaluate the possible derivation of RGS1, we cultured a monocyte-derived cell line with a panel of cytokines and chemokines. RGS1 was significantly induced either by tumor necrosis factor alpha (TNFalpha) or by interleukin-17 (IL-17). CONCLUSION: Our findings indicate that uSpA PBMCs carry strikingly more highly expressed genes compared with PBMCs from AS patients or healthy subjects, and that TNFalpha- and IL-17-inducible RGS1 is a potential biomarker for uSpA, and to a lesser extent for AS, with inflammatory low back pain. | |
20303054 | Cystic lymphoid hyperplasia of the parotid gland in HIV-positive and HIV-negative patients | 2010 Apr | BACKGROUND: Benign lymphoepithelial lesions of the parotid include a spectrum of disorders ranging from lymphoepithelial sialadenitis (LESA) of Sjögren syndrome to lymphoepithelial cysts (LEC) and both human immunodeficiency virus (HIV)-related and -unrelated cystic lymphoid hyperplasia (CLH). They share a common microscopic appearance characterized by epimyoepithelial islands and/or epithelial lined cysts in a lymphoid stroma. However, they differ greatly regarding their etiology, clinical presentation, and management. OBJECTIVE: The purpose of this study was to establish specific immunophenotypic profiles for these diverse disease entities. STUDY DESIGN: Four cases of HIV+ CLH, 5 cases of HIV- CLH, 3 cases of LESA of Sjögren syndrome, and 3 cases of sporadic LEC were quantitatively analyzed for distribution of lymphoreticular cell subpopulations, using antibodies against CD20, CD45RO, CD4, CD8, CD57, and CD68. RESULTS: The cystic lesions in both the HIV+ and HIV- cases were microscopically analogous. However, a marked decrease in the interfollicular CD4:CD8 ratio was observed in all HIV+ CLH cases, which was statistically significant when compared with the HIV- cases (P = .02) and cases of LESA of Sjögren syndrome (P = .03). No significant differences regarding the distribution of CD20+ B lymphocytes in epithelial cyst lining or the interfollicular or follicular distribution of CD20+, CD45RO+, CD57+, and CD68+ cells were present among the different groups. CONCLUSION: Analysis of the interfollicular CD4:CD8 ratio may offer a simple immunophenotypic approach in the distinction of HIV+ from other lymphoepithelial lesions of the parotid gland, when HIV status is unknown and p24 immunohistochemistry is not readily available. | |
19414813 | Neonatal exposure to low-dose 2,3,7,8-tetrachlorodibenzo-p-dioxin causes autoimmunity due | 2009 May 15 | Although 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been shown to influence immune responses, the effects of low-dose TCDD on the development of autoimmunity are unclear. In this study, using NFS/sld mice as a model for human Sjögren's syndrome, in which the lesions are induced by the thymectomy on day 3 after birth, the autoimmune lesions in the salivary glands, and in later phase, inflammatory cell infiltrations in the other organs were developed by neonatal exposure to nonapoptotic dosage of TCDD without thymectomy on day 3 after birth. We found disruption of thymic selection, but not thymic atrophy, in TCDD-administered mice. The endogenous expression of aryl hydrocarbon receptor in the neonatal thymus was significantly higher than that in the adult thymus, suggesting that the neonatal thymus may be much more sensitive to TCDD compared with the adult thymus. In addition, the production of T(H)1 cytokines such as IL-2 and IFN-gamma from splenic CD4(+) T cells and the autoantibodies relevant for Sjögren's syndrome in the sera from TCDD-exposed mice were significantly increased compared with those in control mice. These results suggest that TCDD/aryl hydrocarbon receptor signaling in the neonatal thymus plays an important role in the early thymic differentiation related to autoimmunity. | |
19190085 | Fibulin-6 expression and anoikis in human salivary gland epithelial cells: implications in | 2009 Mar | Important changes in acinar and ductal morphology and function, together with pronounced extracellular matrix (ECM) remodelling, are detectable in the labial salivary glands of Sjögren's syndrome (SS) patients. The objective of this work was to determine the effect of treatment with the anti-Ro/SSA auto-antibodies, characterizing SS, on the expression of fibulin-6, a member of the fibulins family of the ECM, in primary human salivary gland epithelial cell (SGEC) cultures established from biopsies of labial minor salivary glands obtained from healthy donors. The induction of cell detachment and anoikis in SGECs treated with anti-Ro/SSA auto-antibodies were also investigated. Changes in fibulin-6 mRNA expression were measured by semi-quantitative reverse transcriptase-PCR and real-time PCR. Fibulin-6 expression in cells treated with anti-Ro/SSA auto-antibodies was evaluated by flow cytometric analysis and confocal laser scanning microscopy. SGECs undergoing death by anoikis were identified and quantified using Calcein blue/YOPRO-1 dyes. Herein, we present the first evidence of fibulin-6 expression in SGEC that results distributed in the cytoplasm surrounding the inner side of the plasma membrane. Fibulin-6 was down-regulated in SGECs treated with anti-Ro/SSA auto-antibodies in which a marked cell detachment and a reduction of cell viability were observed. Notably, a reduction of fibulin-6 expression in SGECs treated with anti-Ro/SSA auto-antibodies corresponds to an increase of anoikis cell death. Our observations demonstrate a dysregulation of fibulin-6 in the pathological processes observed in SS and provide new evidence that disorganization of the ECM environment could damage the architecture and function of the salivary glands. | |
20213089 | [Steroid-induced spinal epidural lipomatosis in pediatric patients]. | 2010 Jul | We describe three adolescent patients with chronic autoimmune disorders who developed back pain and, in two cases, spinal symptoms several months after initiating chronic treatment with glucocorticoids. In all cases, MRI showed extensive spinal epidural lipomatosis, a rare but classic untoward effect of chronic glucocorticoid therapy. Analysis of these three, as well as 11 other pediatric cases extracted from the international literature, revealed that spinal epidural lipomatosis manifests most commonly with back pain and within a mean of 1.3 years (range, 3 month-6.5 years) after initiation of therapy with corticosteroids. It frequently remits after reduction of the corticosteroid dose. | |
19854762 | Induction of TNF-alpha-converting enzyme-ectodomain shedding by pathogenic autoantibodies. | 2009 Dec | The release of the soluble form of tumor necrosis factor (TNF)-alpha from the plasma membrane occurs through the activation of the secretase tumor necrosis factor-alpha-converting enzyme (TACE). The current study was designed to examine whether the anti-Ro/SSA autoantibodies (Abs) are capable to regulate TACE expression in non-neoplastic human salivary gland epithelial cells (SGEC) cultures. We investigated the effect of anti-Ro/SSA Abs on the localization and abundance of cell-surface TACE and on TACE pro-domain-shedding and activation. In addition, the potential physiological consequences of TNF-alpha blockage by the biological agent Adalimumab on post-translational regulation of TACE are discussed. Anti-Ro/SSA Abs were purified from IgG fractions of patients with primary Sjögren's syndrome, using Sepharose 4B-Ro/SSA affinity columns. Flow cytometry, reverse transcription-PCR, western blot and immunohistochemistry were used to study TACE expression on SGEC and TACE regulation by Abs. Our study demonstrated a dose-dependent increase of TACE messenger RNA (mRNA) expression in anti-Ro/SSA Abs-treated SGEC, followed by internalization, pro-domain shedding and activation of TACE protein, suggesting that increased TACE activity is necessary for the release of TNF-alpha observed in anti-Ro/SSA Abs-stimulated SGEC. Adalimumab treatment brought TACE mRNA and surface TACE expression to levels than those observed in untreated SGEC. These data suggest that the effect of anti-Ro/SSA Abs on TACE expression and intracellular distribution is exerted by TNF-alpha production. | |
18397959 | Increased frequency of CD16+ monocytes and the presence of activated dendritic cells in sa | 2009 Mar | OBJECTIVES: In the salivary glands of patients with primary Sjögren Syndrome (pSjS) an accumulation of dendritic cells (DCs) is seen, which is thought to play a role in stimulating local inflammation. Aberrancies in subsets of monocytes, generally considered the blood precursors for DCs, may play a role in this accumulation of DCs. This study is aimed at determining the level of mature CD14lowCD16+ monocytes in pSjS and their contribution to the accumulation of DCs in pSjS. METHODS: Levels of mature and immature monocytes in patients with pSjS (n = 19) and controls (n = 15) were analysed by flow cytometry. The reverse transmigration system was used for generation of DCs generated from monocyte subsets. The phenotype of DCs in pSjS salivary glands was analysed using immunohistochemistry. In vivo tracking of monocyte subsets was performed in a mouse model. RESULTS: Increased levels of mature CD14lowCD16+ monocytes were found in patients with pSjS (mean (SD) 14.5 (5.5)% vs 11.4 (3.4)%). These cells showed normal expression of chemokine receptor and adhesion molecules. Mature monocytes partly developed into DC-lysosome-associated membrane glycoprotein (LAMP)+ (19.6 (7.5)%) and CD83+ (16 (9)%) DCs, markers also expressed by DCs in pSjS salivary glands. Monocyte tracking in the non-obese diabetic (NOD) mouse showed that the homologue population of mature mouse monocytes migrated to the salivary glands, and preferentially developed into CD11c+ DCs in vivo. CONCLUSIONS: Mature monocytes are increased in pSjS and patient and mouse data support a model where this mature monocyte subset migrates to the salivary glands and develops into DCs. |