Search for: rheumatoid arthritis methotrexate autoimmune disease biomarker gene expression GWAS HLA genes non-HLA genes
ID | PMID | Title | PublicationDate | abstract |
---|---|---|---|---|
27142288 | Gold Complexes for Therapeutic Purposes: an Updated Patent Review (2010-2015). | 2016 | Gold has always aroused great interest in the history of mankind. It has been used for thousands of years for jewelry, religious cult valuables, durable goods and in the art world. However, few know that such a precious and noble metal was exploited in the past by the ancients also for its therapeutic properties. More recently, in the twentieth century some complexes containing gold centers in the oxidation state +1 were studied for the treatment of the rheumatoid arthritis and the orally-administered drug Auranofin was approved by the FDA in 1985. From the chemical point of view, gold derivatives deserve special attention due to the unique position of this metal within the periodic table, which results in unconventional relativistic effects and, ultimately, in the highest electronegativity, electron affinity and redox potential among all metals. In this review, after an introduction concerning the use of gold complexes in medicine, we have examined all the patents internationally or nationally published in the years 2010-2015 (until December 31, 2015) and describing new inorganic compounds containing gold(I) and gold(III) with proved therapeutic properties. These patents were filed to mainly protect compounds with promising anticancer and anti-inflammatory activities (total 18 and 4, respectively). In particular, this work explores both coordination compounds containing ligands with various donor atoms (e.g., N-, O-, S- and -P) and organo-gold derivatives with at least one Au-C bond. The toxicological profile and the intracellular targets reported for some among the patented gold derivatives are discussed. | |
27014276 | Silica, Silicosis, and Autoimmunity. | 2016 | Inhalation of dust containing crystalline silica is associated with a number of acute and chronic diseases including systemic autoimmune diseases. Evidence for the link with autoimmune disease comes from epidemiological studies linking occupational exposure to crystalline silica dust with the systemic autoimmune diseases systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Although little is known regarding the mechanism by which silica exposure leads to systemic autoimmune disease, there is a voluminous literature on silica exposure and silicosis that may help identify immune processes that precede development of autoimmunity. The pathophysiology of silicosis consists of deposition of silica particles in the alveoli of the lung. Ingestion of these particles by macrophages initiates an inflammatory response, which stimulates fibroblasts to proliferate and produce collagen. Silica particles are encased by collagen leading to fibrosis and the nodular lesions characteristic of the disease. The steps in the development of silicosis, including acute and chronic inflammation and fibrosis, have different molecular and cellular requirements, suggesting that silica-induced inflammation and fibrosis may be mechanistically separate. Significantly, it is unclear whether silica-induced inflammation and fibrosis contribute similarly to the development of autoimmunity. Nonetheless, the findings from human and animal model studies are consistent with an autoimmune pathogenesis that begins with activation of the innate immune system leading to proinflammatory cytokine production, pulmonary inflammation leading to activation of adaptive immunity, breaking of tolerance, and autoantibodies and tissue damage. The variable frequency of these immunological features following silica exposure suggests substantial genetic involvement and gene/environment interaction in silica-induced autoimmunity. However, numerous questions remain unanswered. | |
27013544 | Detection of inflammatory biomarkers in saliva and urine: Potential in diagnosis, preventi | 2016 Apr | Inflammation is a part of the complex biological response of inflammatory cells to harmful stimuli, such as pathogens, irritants, or damaged cells. This inflammation has been linked to several chronic diseases including cancer, atherosclerosis, rheumatoid arthritis, and multiple sclerosis. Major biomarkers of inflammation include tumor necrosis factor, interleukins (IL)-1, IL-6, IL-8, chemokines, cyclooxygenase, 5-lipooxygenase, and C-reactive protein, all of which are regulated by the transcription factor nuclear factor-kappaB. Although examining inflammatory biomarkers in blood is a standard practice, its identification in saliva and/or urine is more convenient and non-invasive. In this review, we aim to (1) discuss the detection of these inflammatory biomarkers in urine and saliva; (2) advantages of using salivary and urinary inflammatory biomarkers over blood, while also weighing on the challenges and/or limitations of their use; (3) examine their role(s) in connection with diagnosis, prevention, treatment, and drug development for several chronic diseases with inflammatory consequences, including cancer; and (4) explore the use of innovative salivary and urine based biosensor strategies that may permit the testing of biomarkers quickly, reliably, and cost-effectively, in a decentralized setting. | |
27006517 | Enzyme-labeled Antigen Method: Development and Application of the Novel Approach for Ident | 2016 Feb 27 | In chronic inflammatory lesions of autoimmune and infectious diseases, plasma cells are frequently observed. Antigens recognized by antibodies produced by the plasma cells mostly remain unclear. A new technique identifying these corresponding antigens may give us a breakthrough for understanding the disease from a pathophysiological viewpoint, simply because the immunocytes are seen within the lesion. We have developed an enzyme-labeled antigen method for microscopic identification of the antigen recognized by specific antibodies locally produced in plasma cells in inflammatory lesions. Firstly, target biotinylated antigens were constructed by the wheat germ cell-free protein synthesis system or through chemical biotinylation. Next, proteins reactive to antibodies in tissue extracts were screened and antibody titers were evaluated by the AlphaScreen method. Finally, with the enzyme-labeled antigen method using the biotinylated antigens as probes, plasma cells producing specific antibodies were microscopically localized in fixed frozen sections. Our novel approach visualized tissue plasma cells that produced 1) autoantibodies in rheumatoid arthritis, 2) antibodies against major antigens of Porphyromonas gingivalis in periodontitis or radicular cyst, and 3) antibodies against a carbohydrate antigen, Strep A, of Streptococcus pyogenes in recurrent tonsillitis. Evaluation of local specific antibody responses expectedly contributes to clarifying previously unknown processes in inflammatory disorders. | |
26946021 | Strategies for the development of an electrochemical bioassay for TNF-alpha detection by u | 2016 May 1 | TNF-α is an inflammatory cytokine produced by the immune system. Serum TNF-α level is elevated in some pathological states such as septic shock, graft rejection, HIV infection, neurodegenerative diseases, rheumatoid arthritis and cancer. Detecting trace amount of TNF-α is, also, very important for the understanding of tumor biological processes. Detection of this key biomarker is commonly achieved by use of ELISA or cytofluorimetric based methods. In this study the traditional optical detection was replaced by differential pulse voltammetry (DPV) and an affinity molecule, produced by evolutionary approaches, has been tested as capture bioreceptor. This molecule, namely a combinatorial non-immunoglobulin protein (Affibody®) interacts with TNF-α selectively and was here tested in a sandwich assay format. Moreover magnetic beads were used as support for bioreceptor immobilization and screen printed carbon electrodes were used as transducers. TNF-α calibration curve was performed, obtaining the detection limit of 38pg/mL, the quantification range of 76-5000pg/mL and RSD%=7. Preliminary results of serum samples analysis were also reported. | |
26904337 | An Atraumatic Symphysiolysis with a Unilateral Injured Sacroiliac Joint in a Patient with | 2016 | Glucocorticoids are well known for altering bone structure and elevating fracture risk. Nevertheless, there are very few reports on pelvic ring fractures, compared to other bones, especially with a predominantly ligamentous insufficiency, resulting in a rotationally unstable pelvic girdle. We report a 39-year-old premenopausal woman suffering from an atraumatic symphysiolysis and disruption of the left sacroiliac joint. She presented with external rotational pelvic instability and immobilization. Prior to the injury, she received high-dose glucocorticoids for a tentative diagnosis of rheumatoid arthritis over two months. This diagnosis was not confirmed. Other causes leading to the unstable pelvic girdle were excluded by several laboratory and radiological examinations. Elevated basal cortisol and adrenocorticotropic hormone levels were measured and subsequent corticotropin-releasing hormone stimulation, dexamethasone suppression test, and petrosal sinus sampling verified the diagnosis of adrenocorticotropic hormone-dependent Cushing's disease. The combination of adrenocorticotropic hormone-dependent Cushing's disease and the additional application of exogenous glucocorticoids is the most probable cause of a rare atraumatic rotational pelvic instability in a premenopausal patient. To the authors' knowledge, this case presents the first description of a rotationally unstable pelvic ring fracture involving a predominantly ligamentous insufficiency in the context of combined exogenous and endogenous glucocorticoid elevation. | |
26861296 | The Role of Cdkn1A-Interacting Zinc Finger Protein 1 (CIZ1) in DNA Replication and Pathoph | 2016 Feb 5 | Cdkn1A-interacting zinc finger protein 1 (CIZ1) was first identified in a yeast-2-hybrid system searching for interacting proteins of CDK2 inhibitor p21(Cip1/Waf1). Ciz1 also binds to CDK2, cyclin A, cyclin E, CDC6, PCNA, TCF4 and estrogen receptor-α. Recent studies reveal numerous biological functions of CIZ1 in DNA replication, cell proliferation, and differentiation. In addition, splicing variants of CIZ1 mRNA is associated with a variety of cancers and Alzheimer's disease, and mutations of the CIZ1 gene lead to cervical dystonia. CIZ1 expression is increased in cancers and rheumatoid arthritis. In this review, we will summarize the biological functions and molecular mechanisms of CIZ1 in these physiological and pathological processes. | |
26743033 | Fully human MAP-fusion protein selectively targets and eliminates proliferating CD64(+) M1 | 2016 May | Classical immunotoxins compromise a binding component (for example, a ligand, antibody or fragment thereof) and a cytotoxic component, usually derived from bacteria or plants (for example, Pseudomonas exotoxin A or ricin). Despite successful testing in vitro, the clinical development of immunotoxins has been hampered by immunogenicity and unsatisfactory safety profiles. Therefore, research has focused on fully human pro-apoptotic components suitable for the development of cytolytic fusion proteins (CFP). We recently reported that human microtubule-associated protein tau (MAP) can induce apoptosis when delivered to rapidly proliferating cancer cells. Here, we describe a new fully human CFP called H22(scFv)-MAP, which specifically targets CD64(+) cells. We show that H22(scFv)-MAP can efficiently kill proliferating HL-60 pro-monocytic cells in vitro. In addition, the human CFP specifically eliminates polarized M1 macrophages in a transgenic mouse model of cutaneous chronic inflammation. Because M1 macrophages promote the pathogenesis of many chronic inflammatory diseases, targeting this cell population with H22(scFv)-MAP could help to treat diseases such as atopic dermatitis, rheumatoid arthritis and inflammatory bowel disease. | |
26651929 | [Mycobacterium avium tumoral infection mimicking a lung adenocarcinoma: A potential diagno | 2016 Apr | INTRODUCTION: The incidence of atypical mycobacterial infection in Europe is estimated at one case per 100,000 persons/year. Despite the low incidence of Mycobacterium avium infection, it can result in a nodular lesion simulating lung cancer. We report a case of atypical mycobacteriosis, mimicking lung cancer, which led to a lobectomy. CASE REPORT: It was a right pulmonary upper lobe nodule found in a 63-year-old COPD patient, partially nephrectomized for renal carcinoma, and weekly treated by methotrexate for rheumatoid arthritis. FDG uptake was weakly positive on PET-CT (SUV=2.2) in the upper fissure. Bronchoscopy yielded no lesions and no bacteriological findings. Percutaneous transthoracic lung biopsy revealed lung adenocarcinoma stage T1 (a) N0M0. An upper lobectomy with lymphadenectomy was performed. Histological examination revealed epithelioid granuloma surrounded by giant cells suggestive of tuberculomas. The bronchial washing fluid culture was positive for Mycobacterium avium after 7 weeks. CONCLUSION: In pseudo-neoplastic forms of atypical mycobacteriosis, the presence of alveolar, inflammatory cytonuclear abnormalities can mimic an adenocarcinoma. Making the difference between the cytonuclears defects related to inflammation or neoplasia remains a daily challenge in histopathology. | |
26458178 | Inducing tissue specific tolerance in autoimmune disease with tolerogenic dendritic cells. | 2015 Jul | Current immunosuppressive therapy acts systemically, causing collateral damage and does not necessarily cope with the cause of rheumatoid arthritis. Tissue specific immune modulation may restore tolerance in patients with autoimmune diseases such as RA, but desires knowledge on relevant target autoantigens. We present the case of type 1 diabetes as prototype autoimmune disease with established autoantigens to set the stage for tissue-specific immune modulation using tolerogenic dendritic cells pulsed with autoantigen in RA. This approach induces autoantigen-specific regulatory T cells that exert their tissue-specific action through a combination of linked suppression and infectious tolerance, introducing a legacy of targeted, localised immune regulation in the proximity of the lesion. Several trials are in progress in RA employing various types of tolerogenic DCs. With knowledge on mode of action and confounding effects of concomitant immunosuppressive therapy, this strategy may provide novel immune intervention that may also prevent RA in high-risk subjects. | |
26397418 | Nanostructured bioluminescent sensor for rapidly detecting thrombin. | 2016 Mar 15 | Thrombin plays a key role in thrombosis and hemostasis. The abnormal level of thrombin in body fluids may lead to different diseases, such as rheumatoid arthritis, glomerulonephritis, etc. Detection of thrombin level in blood and/or urine is one of important methods for medical diagnosis. Here, a bioluminescent sensor is developed for non-invasively and rapidly detecting thrombin in urine. The sensor is assembled through conjugating gold nanoparticles (Au NPs) and a recombinant protein containing Renilla luciferase (pRluc) by a peptide, which is thrombin specific substrate. The luciferase-catalyzed bioluminescence can be quenched by peptide-conjugating Au NPs. In the presence of thrombin, the short peptide conjugating luciferase and Au NPs is digested and cut off, which results in the recovery of bioluminescence due to the release of luciferase from Au NPs. The bioluminescence intensity at 470 nm is observed, and increases with increasing concentration of thrombin. The bioluminescence intensity of this designed sensor is significantly recovered when the thrombin digestion time lasts for 10 min. In addition, a similar linear relationship between luminescence intensity and the concentration of thrombin is found in the range of 8 nM to 8 μM in both buffer and human urine spiked samples. The limit of detection is as low as 80 pM. It is anticipated that our nanosensor could be a promising tool for clinical diagnosis of thrombin in human urine. | |
26184547 | Gene/environment interactions in the pathogenesis of autoimmunity: new insights on the rol | 2015 Nov | Autoimmune disorders are increasing worldwide. Although their pathogenesis has not been elucidated yet, a complex interaction of genetic and environmental factors is involved in their onset. Toll-like receptors (TLRs) represent a family of pattern recognition receptors involved in the recognition and in the defense of the host from invading microorganisms. They sense a wide range of pathogen associated molecular patterns (PAMPs) deriving from metabolic pathways selective of bacterial, viral, fungal and protozoan microorganisms. TLR activation plays a critical role in the activation of the downstream signaling pathway by interacting and recruiting several adaptor molecules. Although TLRs are involved in the protection of the host, several studies suggest that, in certain conditions, they play a critical role in the pathogenesis of autoimmune diseases. We review the most recent advances showing a correlation between some single nucleotide polymorphisms or copy number variations in TLR genes or in adaptor molecules involved in TLR signaling and the onset of several autoimmune conditions, such as Type I diabetes, autoimmune polyendocrinopathy candidiasis-ectodermal dystrophy, rheumatoid arthritis, systemic lupus erythematosus and systemic sclerosis. In light of the foregoing we finally propose that molecules involved in TLR pathway may represent the targets for novel therapeutic treatments in order to stop autoimmune processes. | |
26048066 | A Method for Delineation of Bone Surfaces in Photoacoustic Computed Tomography of the Fing | 2016 Jan | Photoacoustic (PA) imaging of interphalangeal peripheral joints is of interest in the context of using the synovial membrane as a surrogate marker of rheumatoid arthritis. Previous work has shown that ultrasound (US) produced by absorption of light at the epidermis reflects on the bone surfaces within the finger. When the reflected signals are backprojected in the region of interest, artifacts are produced, confounding interpretation of the images. In this work, we present an approach where the PA signals known to originate from the epidermis are treated as virtual US transmitters, and a separate reconstruction is performed as in US reflection imaging. This allows us to identify the bone surfaces. Furthermore, the identification of the joint space is important as this provides a landmark to localize a region-of-interest in seeking the inflamed synovial membrane. The ability to delineate bone surfaces allows us to identify not only the artifacts but also the interphalangeal joint space without recourse to new US hardware or a new measurement. We test the approach on phantoms and on a healthy human finger. | |
26020554 | Jobelyn® exhibited anti-inflammatory, antioxidant, and membrane-stabilizing activities in | 2015 Sep | BACKGROUND: Jobelyn® (JB) is an African sorghum-based food supplement claimed to be efficacious for the treatment of rheumatoid arthritis (RA). Although in vitro studies confirmed its anti-inflammatory property, no study had shown the effect of JB using in vivo animal models of inflammation. Thus, its effects on acute and chronic inflammation in rats were evaluated in this study. Its effect on rat red blood cell (RBC) lysis was also assessed. METHODS: Acute inflammation was induced with intraplanter injection of carrageenan and increase in rat paw volume was measured using plethysmometer. The volume of fluid exudates, number of leukocytes, concentrations of malondialdehyde (MDA), and glutathione (GSH) in the fluid were measured on day 5 after induction of chronic inflammation with carrageenan in the granuloma air pouch model. RBC lysis induced by hypotonic medium as determined by release of hemoglobin was measured spectrophotometerically. RESULTS: JB (50-200 mg/kg) given orally produced a significant inhibition of acute inflammation induced by carrageenan in rats. It reduced the volume and number of leukocytes in inflammatory fluid in the granuloma air pouch model of chronic inflammation. It further decreased the levels of MDA in the fluid suggesting antioxidant property. JB elevated the concentrations of GSH in inflammatory exudates indicating free radical scavenging activity. It also significantly inhibited RBC lysis caused by hypotonic medium, suggesting membrane-stabilizing property. CONCLUSIONS: JB has in vivo anti-inflammatory activity, which may be related to its antioxidant and membrane-stabilizing properties, supporting its use for the treatment of arthritic disorder. | |
25956696 | Finding new scaffolds of JAK3 inhibitors in public database: 3D-QSAR models & shape-based | 2015 Nov | The STAT/JAK3 pathway is a well-known therapeutic target in various diseases (ex. rheumatoid arthritis and psoriasis). The therapeutic advantage of JAK3 inhibition motivated to find new scaffolds with desired DMPK. For the purpose, in silico high-throughput sieves method is developed consisting of a receptor-guided three-dimensional quantitative structure-activity relationship study and shape-based virtual screening. We developed robust and predictive comparative molecular field analysis (q (2)Â =Â 0.760, r (2)Â =Â 0.915) and comparative molecular similarity index analysis (q (2)Â =Â 0.817, r (2)Â =Â 0.981) models and validated these using a test set, which produced satisfactory predictions of 0.925 and 0.838, respectively. | |
25878716 | Evaluation of the Effects of Some Brazilian Medicinal Plants on the Production of TNF- α | 2015 | Several plant species are traditionally used in Brazil to treat various inflammatory diseases. Tumor necrosis factor- (TNF-) α and chemokine (C-C motif) ligand 2 (CCL2) are key inflammatory mediators in diseases like rheumatoid arthritis and atherosclerosis, respectively; nevertheless, only a few extracts have been assayed against these targets. We herein report the effect of 19 plant extracts on TNF-α and CCL2 release by lipopolysaccharide- (LPS-) stimulated THP-1 cells, a human monocytic leukemia cell line, along with their radical scavenging activity on DPPH. The extracts of Caryocar brasiliense, Casearia sylvestris, Coccoloba cereifera, and Terminalia glabrescens inhibited TNF-α production in a concentration-dependent manner. Fractionation of these extracts potentiated the anti-TNF-α effect, which was shown to concentrate in polar fractions, mainly composed by polyphenols. Significant CCL2 inhibition was elicited by Lippia sidoides and Terminalia glabrescens extracts, whose fractionation resulted in highly active low polar fractions. All assayed extracts showed strong radical scavenging activity, but antioxidant activity did not correlate with inhibition of TNF-α or CCL2 production. Our results allowed identifying extracts with selective capacity to block cytokine production; therefore, further purification of these extracts may yield molecules that could be useful in the treatment of chronic inflammatory diseases. | |
25871873 | Intravitreal aflibercept after bilateral bevacizumab-induced iritis. | 2015 May | PURPOSE: To present a case of neovascular age-related macular degeneration treated with aflibercept intravitreal injections after bilateral bevacizumab injections, administered on separate dates, resulted in bilateral iritis. CASE REPORT: A 73-year-old woman with a previous history of two episodes of nongranulomatous iritis in her right eye that was believed to be associated with her systemic diagnosis of rheumatoid arthritis was treated with intravitreal bevacizumab injections for bilaterally occurring neovascular age-related macular degeneration. Initial bevacizumab injections in each eye administered sequentially over a week's time resulted in immediate-onset nongranulomatous iritis in each eye. Subsequent intravitreal injections of aflibercept were administered, and therapeutic benefit was achieved without occurrence of iritis. CONCLUSIONS: In cases where intravitreal bevacizumab results in anterior uveitis, aflibercept may be a safe alternative therapeutic choice for the treatment of neovascular age-related macular degeneration. | |
25769667 | Bioanalytical insights into mediator lipidomics. | 2015 Sep 10 | The importance of lipids in health and disease has been widely acknowledged. Lipids are well known to undergo enzymatic and/or non-enzymatic conversions to lipid mediators (LMs), which demonstrate potent actions in various biological events, such as the regulation of cellular signaling pathways and the promotion and resolution of inflammation. LMs activate G-protein-coupled receptors (GPCRs) to exert various functions. Monitoring these mediators in disease is essential to uncover the mechanisms of pathogenesis for many diseases, such as asthma, rheumatoid arthritis, Alzheimer's disease, and cancer. Along with technical developments in mass spectrometry, highly sensitive and multiplexed analyses of LMs in the human periphery and other tissues have become available. These advancements enable the temporal and spatial profiling of LMs; therefore, the findings obtained from LM profiling are expected to decode pathology. As trace amounts of LMs can exert functions, the development of a highly sensitive, accurate, and robust analytical method is necessary. Although not mandatory, mediator lipidomics validation is becoming popular and remains challenging. Because LMs already exist in biological matrices, evaluations of the matrix effect and extraction efficiencies are important issues. Thus, more careful analyses are required. In this review, we focus on mediator lipidomics, including polyunsaturated fatty acids (PUFAs), such as omega-3 and omega-6 fatty acids, and LMs derived from PUFAs, such as eicosanoids, lipoxins and resolvins. In addition to the recent progress in human mediator lipidomics, bioanalytical insights derived from this field (i.e., effective sample preparation from biological matrices and evaluation of the matrix effect) are described herein. | |
25760067 | Evaluation of mandibular condyles in children with unilateral posterior crossbite. | 2015 | The relationship of mandibular condyle dimensions and its association with unilateral posterior crossbite (UPXB) has been suggested in the literature. The purpose of this prospective study was to evaluate mandibular condyles on the left and right sides and between crossed and non-crossed sides in the sagittal and coronal planes, using cone-beam computed tomography (CBCT). Twenty CBCT images of 40 temporo mandibular joints (TMJs) in individuals in mixed dentition phase, which included 9 males (mean 7.9 years) and 11 females (mean 8.2 years), with unilateral posterior crossbite without premature contacts and functional mandibular shifts and with transverse maxillary deficiency. The criteria for sample exclusion included the presence of painful symptoms, facial trauma history, systemic diseases such as juvenile rheumatoid arthritis, mouth opening limitation (< 40 mm), congenital or genetic anomalies, and skeletal asymmetries that may result in TMJ disorders. Dimensional measurements of the condyles between the right and left sides and crossed and non-crossed sides in sagittal and coronal view were made. There was no significant difference between the measurements of the crossed and non-crossed sides in both sagittal and coronal view. These findings suggest that the presence of unilateral posterior crossbite in children with UPXB did not result in changes between the mandibular condyles in the right and left sides or between the crossed and non-crossed sides in the coronal or sagittal plane. | |
25601191 | NF-κB-direct activation of microRNAs with repressive effects on monocyte-specific genes i | 2015 Jan 5 | BACKGROUND: Monocyte-to-osteoclast conversion is a unique terminal differentiation process that is exacerbated in rheumatoid arthritis and bone metastasis. The mechanisms implicated in upregulating osteoclast-specific genes involve transcription factors, epigenetic regulators and microRNAs (miRNAs). It is less well known how downregulation of osteoclast-inappropriate genes is achieved. RESULTS: In this study, analysis of miRNA expression changes in osteoclast differentiation from human primary monocytes revealed the rapid upregulation of two miRNA clusters, miR-212/132 and miR-99b/let-7e/125a. We demonstrate that they negatively target monocyte-specific and immunomodulatory genes like TNFAIP3, IGF1R and IL15. Depletion of these miRNAs inhibits osteoclast differentiation and upregulates their targets. These miRNAs are also upregulated in other inflammatory monocytic differentiation processes. Most importantly, we demonstrate for the first time the direct involvement of Nuclear Factor kappa B (NF-κB) in the regulation of these miRNAs, as well as with their targets, whereby NF-κB p65 binds the promoters of these two miRNA clusters and NF-κB inhibition or depletion results in impaired upregulation of their expression. CONCLUSIONS: Our results reveal the direct involvement of NF-κB in shutting down certain monocyte-specific genes, including some anti-inflammatory activities, through a miRNA-dependent mechanism for proper osteoclast differentiation. |