Search for: rheumatoid arthritis methotrexate autoimmune disease biomarker gene expression GWAS HLA genes non-HLA genes
ID | PMID | Title | PublicationDate | abstract |
---|---|---|---|---|
34329579 | Progressive multifocal leukoencephalopathy in patients treated with rituximab: a 20-year r | 2021 Aug | Progressive multifocal leukoencephalopathy (PML) is a serious and usually fatal CNS infection caused by the John Cunningham virus. CD4(+) and CD8(+) T-cell lymphopenia, resulting from HIV infection, chemotherapy, or immunosuppressive therapy, are primary risk factors for PML. Following its introduction in 1997, the immunomodulatory anti-CD20 monoclonal antibody, rituximab, has received regulatory approval worldwide for treatment of non-Hodgkin lymphoma, rheumatoid arthritis, chronic lymphocytic leukaemia, granulomatosis with polyangiitis, microscopic polyangiitis, and pemphigus vulagris. Rituximab leads to prolonged B-lymphocyte depletion, potentially allowing John Cunningham viral infection to occur. Six unexpected cases of PML infection developing in rituximab-treated patients were first reported in 2002. We review 20 years of information on clinical findings, pathology, epidemiology, proposed pathogenesis, and risk-management issues associated with PML infection developing after rituximab treatment. Since the first case series report of 52 cases of rituximab-associated PML among patients with non-Hodgkin lymphoma or chronic lymphocytic leukaemia in 2009, updated and diligent pharmacovigilance efforts have provided reassurance that this fatal toxicity is a rare clinical event with concurring causal factors. International harmonisation of safety warnings around rituximab-associated PML should be considered, with these notifications listing rituximab-associated PML under a section titled warnings and precautions as is the case in most countries, rather than a boxed warning as is the case in the USA. | |
34326842 | Predictive Value of High ICAM-1 Level for Poor Treatment Response to Low-Dose Decitabine i | 2021 | Primary immune thrombocytopenia (ITP) is an autoimmune hemorrhagic disease. Endothelial cell activation/injury has been found in some autoimmune diseases including SLE, systemic sclerosis, and rheumatoid arthritis, but its role in ITP pathogenesis remains unclear. This study attempted to elucidate the correlation between endothelial dysfunction and disease severity of ITP and find related markers to predict response to low-dose decitabine treatment. Compared with healthy volunteers, higher plasma levels of soluble intercellular adhesion molecule-1 (ICAM-1), vascular endothelial growth factor (VEGF), and Angiopoietin-2 were found in adult corticosteroid resistant ITP patients. Notably, ICAM-1 levels were negatively correlated with the platelet count, and positively associated with the bleeding score. Recently, we have reported the efficacy and safety of low-dose decitabine in adult patients with ITP who failed for the first line therapies. Here, we evaluated the correlation of plasma ICAM-1 level with the efficacy of low-dose decitabine therapy for corticosteroid resistant ITP. A total of 29 adult corticosteroid resistant ITP patients who received consecutive treatments of low-dose decitabine were enrolled in this study. Fourteen patients showed response (nine showed complete response and five showed partial response). The levels of ICAM-1 before and after treatment were significantly higher in the non-responsive ITP patients than in the responsive patients. As shown in the multivariable logistic regression model, the odds of developing no-response to low-dose decitabine increased by 36.8% for per 5 ng/ml increase in plasma ICAM-1 level [odds ratio (OR) 1.368, 95% confidence interval (CI): 1.060 to 1.764]. In summary, this was the first study to elucidate the relationship between endothelial dysfunction and corticosteroid resistant ITP and identify the potential predictive value of ICAM-1 level for response to low-dose decitabine. | |
34277833 | Safety of immune checkpoint inhibitors in patients with cancer and pre-existing autoimmune | 2021 Jun | BACKGROUND: Patients with pre-existing autoimmune disease (AD) have been largely excluded from clinical trials of immune checkpoint inhibitors (ICI), so data on safety of ICIs among patients with pre-existing AD are relatively limited. There is a need for deeper understanding of the type and management of complications from ICI in patients with pre-existing AD. We sought to investigate the safety of ICIs in patients with pre-existing ADs as well as factors associated with AD flare. METHODS: Consecutive patients with pre-existing AD who received monotherapy as well as combination of ICI therapies at our institution from September 2015 through September 1(st), 2018 were identified. Clinical information was abstracted via manual chart review. Clinical factors associated with AD flare were determined using multivariable logistic regression. RESULTS: A total of 42 patients were identified of whom 12 developed AD flare. All flares were treated with oral or topical corticosteroids, while a patient with flare of rheumatoid arthritis was treated with tofacitinib and another patient with Crohn's flare was treated with infliximab. Female sex, smoking status, higher age at the start of ICI therapy, cancer type, such as melanoma and lung cancer as compared to other cancers, were not significantly associated with AD flare, however, patients with underlying rheumatologic AD were noted to have a five times greater likelihood of flare as compared to other non-rheumatologic AD. Nine patients developed new immune related adverse events (IRAEs) unrelated to underlying AD, such as inflammatory poly-arthropathy, neuropathy, hypothyroidism, diarrhea, lichenoid drug eruptions, which were managed with oral and/or topical corticosteroids. ICI was stopped in six patients due to AD flare, in four patients due to IRAE flare (out of which one resumed ICI after resolution of IRAE). CONCLUSIONS: In patients with pre-existing AD treated with ICI, AD flare occurred in 28% of patients and were managed successfully with corticosteroids alone or with additional disease-modifying therapies. ICI could be considered in patients with AD, but with very close monitoring and preemptive multidisciplinary collaboration. | |
34237804 | The role of tocilizumab therapy in critically ill patients with severe acute respiratory s | 2021 Jul 12 | CONTEXT: Tocilizumab (TCZ), an interleukin-6 (IL-6) receptor antagonist, has been approved for use in rheumatoid arthritis and cytokine storm syndrome (CSS) associated with chimeric antigen receptor T cells treatment. Although TCZ is currently utilized in the treatment of critically ill coronavirus 2019 (COVID-19) patients, data on survival impact is minimal. OBJECTIVES: To assess the mortality rate of patients presenting with COVID-19 who received TCZ for suspected CSS. METHODS: This retrospective cohort study was conducted at Henry Ford Health System between March 10, 2020 and May 18, 2020. Data collection began in May 2020 and was completed in June 2020. Patients included in the study required hospital admission and had positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction on nasopharyngeal swab. Eligibility criteria to receive TCZ, per hospital protocol, included any of the following: persistent fever, defined as 38.0 °C for at least 6 hours; a diagnosis of the acute respiratory distress syndrome (ARDS); serum ferritin ≥1,000 (ng/mL) or doubling within 24 hours; D-Dimer ≥ 5 (mg/L); serum lactate dehydrogenase ≥500 (IU/L); or interlukin-6 level ≥5 times the upper limit of normal. Dosing was initially determined by weight, then changed to a fixed 400 mg per hospital protocol. A comparator cohort was created from patients with COVID-19 and ARDS who did not receive TCZ. Patient survival was analyzed using the Kaplan-Meier method and compared by log rank test. A multivariable cox regression was applied to evaluate the association between TCZ and mortality. RESULTS: One hundred and thirty patients were evaluated in the study, 54 (41.5%) of whom received TCZ. Patients who received TCZ were younger (mean age, 63.8 vs. 69.4 years; p=0.0083) and had higher body mass indices (mean, 33.9 vs. 30.4; p=0.005). Of the comorbid conditions evaluated, heart disease was more common in the comparator group than the TCZ group (27 patients [35.5%] vs. 10 patients [18.5%]; p=0.034). A Kaplan-Meier survival curve demonstrated no difference in survival between TCZ and comparator patients (log rank p=0.495). In the multivariable Cox regression model for mortality at 30 days, treatment with TCZ was not associated with decreased mortality (hazard ratio, 1.1; 95% confidence interval, 0.53-2.3; p=0.77). Lower mean C-reactive protein (CRP) levels were demonstrated within 48 hours of disposition in the TCZ group (mean TCZ, 4.9 vs. mean comparator, 13.0; p=<0.0001). CONCLUSIONS: In this cohort study, no difference in survival was observed in critically ill patients treated with TCZ. | |
34112638 | Use of rituximab in paediatric nephrology. | 2021 Nov | Rituximab is a chimeric monoclonal antibody capable of depleting B cell populations by targeting the CD20 antigen expressed on the cell surface. Its use in oncology, initially in B cell lymphoma and post-transplant lymphoproliferative disorders, predates its current utility in various fields of medicine wherein it has become one of the safest and most effective antibody-based therapies. It was subsequently found to be effective for rheumatological conditions such as rheumatoid arthritis and antineutrophil cytoplasmic antibody-associated vasculitis. Over the past decade, rituximab has generated a lot of interest in nephrology and has become an emerging or accepted therapy for multiple renal conditions, including systemic lupus erythematosus, lupus nephritis, vasculitis, nephrotic syndrome and in different scenarios before and after kidney transplantation. This review outlines its current use in paediatric nephrology practice, focusing on the knowledge required for general paediatricians who may be caring for children prescribed this medication and reviewing them on a shared care basis. | |
33511217 | Tofacitinib Ameliorates Lipopolysaccharide-Induced Acute Kidney Injury by Blocking the JAK | 2021 | Septic acute kidney injury (AKI) is the most common AKI syndrome in the intensive care unit (ICU), and it accounts for approximately half of AKI cases. Tofacitinib (TOFA) is a pan-Janus kinase (JAK) inhibitor that exhibits potent anti-inflammatory activity in rheumatoid arthritis. However, no study has examined the functional role of TOFA in septic AKI. In the present study, we investigated the protective effects of TOFA on septic AKI and the underlying mechanisms. A lipopolysaccharide- (LPS-) induced AKI model was established in C57BL/6 mice via an intraperitoneal injection of LPS (10 mg/kg). One hour after LPS challenge, the mice were orally administered TOFA (5, 10, or 15 mg/kg) every 6 h until sacrifice at 24 h. We found that TOFA significantly ameliorated LPS-induced renal histopathological changes and dysfunction. TOFA also suppressed the expression levels of proinflammatory cytokines (TNF-α, IL-1β, IL-6, and IFN-γ) and the parameters of oxidative stress (MDA, GSH, SOD, and CAT) in kidney tissues. These results may be associated with the inhibitory effect of TOFA on the JAK-STAT1/STAT3 pathway, which was significantly activated by LPS challenge. TOFA treatment also inhibited LPS-induced activation of the TLR4/NF-κB pathway. In conclusion, we revealed that TOFA had a protective effect on LPS-induced AKI, and it may be a promising therapeutic agent for septic AKI. | |
33495152 | Autoantibodies targeting telomere-associated proteins in systemic sclerosis. | 2021 Jul | OBJECTIVES: Systemic sclerosis (SSc) is an autoimmune fibrotic disease affecting multiple tissues including the lung. A subset of patients with SSc with lung disease exhibit short telomeres in circulating lymphocytes, but the mechanisms underlying this observation are unclear. METHODS: Sera from the Johns Hopkins and University of California, San Francisco (UCSF) Scleroderma Centers were screened for autoantibodies targeting telomerase and the shelterin proteins using immunoprecipitation and ELISA. We determined the relationship between autoantibodies targeting the shelterin protein TERF1 and telomere length in peripheral leucocytes measured by qPCR and flow cytometry and fluorescent in situ hybridisation (Flow-FISH). We also explored clinical associations of these autoantibodies. RESULTS: In a subset of patients with SSc, we identified autoantibodies targeting telomerase and the shelterin proteins that were rarely present in rheumatoid arthritis, myositis and healthy controls. TERF1 autoantibodies were present in 40/442 (9.0%) patients with SSc and were associated with severe lung disease (OR 2.4, p=0.04, Fisher's exact test) and short lymphocyte telomere length. 6/6 (100%) patients with TERF1 autoantibodies in the Hopkins cohort and 14/18 (78%) patients in the UCSF cohort had a shorter telomere length in lymphocytes or leukocytes, respectively, relative to the expected age-adjusted telomere length. TERF1 autoantibodies were present in 11/152 (7.2%) patients with idiopathic pulmonary fibrosis (IPF), a fibrotic lung disease believed to be mediated by telomere dysfunction. CONCLUSIONS: Autoantibodies targeting telomere-associated proteins in a subset of patients with SSc are associated with short lymphocyte telomere length and lung disease. The specificity of these autoantibodies for SSc and IPF suggests that telomere dysfunction may have a distinct role in the pathogenesis of SSc and pulmonary fibrosis. | |
33448196 | [Predictive abilities of O-C2 angle, O-EA angle, and Oc-Ax angle for the development of dy | 2021 Jan 15 | OBJECTIVE: To compare the predictive abilities of O-C2 angle (O-C2a), O-EA angle (O-EAa), and Oc-Ax angle (Oc-Axa) for development of dysphagia in patients after occipitocervical fusion (OCF). METHODS: Between April 2010 and May 2019, 114 patients who underwent OCF and met the selection criteria were selected as the research objects. Among them, 54 were males and 60 were females; they were 14-76 years old, with an average of 50.6 years old. The follow-up time was 13-122 months (median, 60.5 months). The O-C2a, O-EAa, Oc-Axa, and the narrowest oropharyngeal airway space (nPAS) were measured by the lateral X-ray films before operation and at last follow-up, and the differences before and after operation (dO-C2a, dO-EAa, dOc-Axa, and dnPAS) were calculated. Patients were divided into two groups according to whether they had developed postoperative dysphagia. The general data including age, gender, fixed segment, proportion of patients with rheumatoid arthritis (RA), atlantoaxial subluxation (AS), and combined with anterior release surgery (ARS), and imaging indicators were compared between the two groups. The correlations between dO-C2a, dO-EAa, and dOc-Axa and dnPAS in 114 patients were analyzed to further compare the predictive value of three imaging indicators for occurrence of dysphagia after OCF. RESULTS: Dysphagia occurred after OCF in 31 cases with the incidence of 27.2%. There was significant difference in gender between the dysphagia group and the non-dysphagia group ( χ (2)=7.940, P=0.005). There was no significant difference between the two groups in age, fixed segment, the proportion of patients with RA, the proportion of patients with AS, and the proportion of patients combined with ARS ( P>0.05). There was no significant difference in O-C2a and Oc-Axa of 114 patients before operation and at last follow-up ( P>0.05). The differences in O-EAa and nPAS were significant ( P<0.05). There was no significant difference in preoperative O-EAa, Oc-Axa, and nPAS between the dysphagia group and the non-dysphagia group ( P>0.05); the difference in the O-C2a was significant ( t=2.470, P=0.016). At last follow-up, the differences in the above imaging indicators were significant ( P<0.05). There were significant differences in the dO-C2a, dO-EAa, dOc-Axa, and dnPAS between the two groups ( P<0.05). Correlation analysis showed that the dO-C2a, dO-EAa, dOc-Axa were all positively correlated with dnPAS ( P<0.05). The dO-C2a≤-5°, postoperative O-EAa≤100°, postoperative Oc-Axa≤65° were all related to postoperative dysphagia ( P<0.05), and the highest risk factor suffering postoperative dysphagia was dO-C2a ≤-5° with a significant OR of 14.4. CONCLUSION: The dO-C2a, postoperative O-EAa, and postoperative Oc-Axa can be used as the predictive indexes of dysphagia after OCF, among which dO-C2a has the highest predictive value. | |
33837299 | Exploiting the reactive oxygen species imbalance in high-risk paediatric acute lymphoblast | 2021 Jul | BACKGROUND: The prognosis for high-risk childhood acute leukaemias remains dismal and established treatment protocols often cause long-term side effects in survivors. This study aims to identify more effective and safer therapeutics for these patients. METHODS: A high-throughput phenotypic screen of a library of 3707 approved drugs and pharmacologically active compounds was performed to identify compounds with selective cytotoxicity against leukaemia cells followed by further preclinical evaluation in patient-derived xenograft models. RESULTS: Auranofin, an FDA-approved agent for the treatment of rheumatoid arthritis, was identified as exerting selective anti-cancer activity against leukaemia cells, including patient-derived xenograft cells from children with high-risk ALL, versus solid tumour and non-cancerous cells. It induced apoptosis in leukaemia cells by increasing reactive oxygen species (ROS) and potentiated the activity of the chemotherapeutic cytarabine against highly aggressive models of infant MLL-rearranged ALL by enhancing DNA damage accumulation. The enhanced sensitivity of leukaemia cells towards auranofin was associated with lower basal levels of the antioxidant glutathione and higher baseline ROS levels compared to solid tumour cells. CONCLUSIONS: Our study highlights auranofin as a well-tolerated drug candidate for high-risk paediatric leukaemias that warrants further preclinical investigation for application in high-risk paediatric and adult acute leukaemias. | |
33750973 | The nature of genetic and environmental susceptibility to multiple sclerosis. | 2021 | OBJECTIVE: To understand the nature of genetic and environmental susceptibility to multiple sclerosis (MS) and, by extension, susceptibility to other complex genetic diseases. BACKGROUND: Certain basic epidemiological parameters of MS (e.g., population-prevalence of MS, recurrence-risks for MS in siblings and twins, proportion of women among MS patients, and the time-dependent changes in the sex-ratio) are well-established. In addition, more than 233 genetic-loci have now been identified as being unequivocally MS-associated, including 32 loci within the major histocompatibility complex (MHC), and one locus on the X chromosome. Despite this recent explosion in genetic associations, however, the association of MS with the HLA-DRB1*15:01~HLA-DQB1*06:02~a1 (H+) haplotype has been known for decades. DESIGN/METHODS: We define the "genetically-susceptible" subset (G) to include everyone with any non-zero life-time chance of developing MS. Individuals who have no chance of developing MS, regardless of their environmental experiences, belong to the mutually exclusive "non-susceptible" subset (G-). Using these well-established epidemiological parameters, we analyze, mathematically, the implications that these observations have regarding the genetic-susceptibility to MS. In addition, we use the sex-ratio change (observed over a 35-year interval in Canada), to derive the relationship between MS-probability and an increasing likelihood of a sufficient environmental exposure. RESULTS: We demonstrate that genetic-susceptibitly is confined to less than 7.3% of populations throughout Europe and North America. Consequently, more than 92.7% of individuals in these populations have no chance whatsoever of developing MS, regardless of their environmental experiences. Even among carriers of the HLA-DRB1*15:01~HLA-DQB1*06:02~a1 haplotype, far fewer than 32% can possibly be members the (G) subset. Also, despite the current preponderance of women among MS patients, women are less likely to be in the susceptible (G) subset and have a higher environmental threshold for developing MS compared to men. Nevertheless, the penetrance of MS in susceptible women is considerably greater than it is in men. Moreover, the response-curves for MS-probability in susceptible individuals increases with an increasing likelihood of a sufficient environmental exposure, especially among women. However, these environmental response-curves plateau at under 50% for women and at a significantly lower level for men. CONCLUSIONS: The pathogenesis of MS requires both a genetic predisposition and a suitable environmental exposure. Nevertheless, genetic-susceptibility is rare in the population (< 7.3%) and requires specific combinations of non-additive genetic risk-factors. For example, only a minority of carriers of the HLA-DRB1*15:01~HLA-DQB1*06:02~a1 haplotype are even in the (G) subset and, thus, genetic-susceptibility to MS in these carriers must result from the combined effect this haplotype together with the effects of certain other (as yet, unidentified) genetic factors. By itself, this haplotype poses no MS-risk. By contrast, a sufficient environmental exposure (however many events are involved, whenever these events need to act, and whatever these events might be) is common, currently occurring in, at least, 76% of susceptible individuals. In addition, the fact that environmental response-curves plateau well below 50% (especially in men), indicates that disease pathogenesis is partly stochastic. By extension, other diseases, for which monozygotic-twin recurrence-risks greatly exceed the disease-prevalence (e.g., rheumatoid arthritis, diabetes, and celiac disease), must have a similar genetic basis. | |
33705988 | Loss of sarcomeric proteins via upregulation of JAK/STAT signaling underlies interferon-γ | 2021 May | The level of circulating interferon-γ (IFNγ) is elevated in various clinical conditions including autoimmune and inflammatory diseases, sepsis, acute coronary syndrome, and viral infections. As these conditions are associated with high risk of myocardial dysfunction, we investigated the effects of IFNγ on 3D fibrin-based engineered human cardiac tissues ("cardiobundles"). Cardiobundles were fabricated from human pluripotent stem cell-derived cardiomyocytes, exposed to 0-20 ng/ml of IFNγ on culture days 7-14, and assessed for changes in tissue structure, viability, contractile force and calcium transient generation, action potential propagation, cytokine secretion, and expression of select genes and proteins. We found that application of IFNγ induced a dose-dependent reduction in contractile force generation, deterioration of sarcomeric organization, and cardiomyocyte disarray, without significantly altering cell viability, action potential propagation, or calcium transient amplitude. At molecular level, the IFNγ-induced structural and functional deficits could be attributed to altered balance of pro- and anti-inflammatory cytokines, upregulation of JAK/STAT signaling pathway (JAK1, JAK2, and STAT1), and reduced expression of myosin heavy chain, myosin light chain-2v, and sarcomeric α-actinin. Application of clinically used JAK/STAT inhibitors, tofacitinib and baricitinib, fully prevented IFNγ-induced cardiomyopathy, confirming the critical roles of this signaling pathway in inflammatory cardiac disease. Taken together, our in vitro studies in engineered myocardial tissues reveal direct adverse effects of pro-inflammatory cytokine IFNγ on human cardiomyocytes and establish the foundation for a potential use of cardiobundle platform in modeling of inflammatory myocardial disease and therapy. STATEMENT OF SIGNIFICANCE: Various inflammatory and autoimmune diseases including rheumatoid arthritis, sepsis, lupus erythematosus, Chagas disease, and others, as well as viral infections including H1N1 influenza and COVID-19 show increased systemic levels of a pro-inflammatory cytokine interferon-γ (IFNγ) and are associated with high risk of heart disease. Here we explored for the first time if chronically elevated levels of IFNγ can negatively affect structure and function of engineered human heart tissues in vitro. Our studies revealed IFNγ-induced deterioration of myofibrillar organization and contractile force production in human cardiomyocytes, attributed to decreased expression of multiple sarcomeric proteins and upregulation of JAK/STAT signaling pathway. FDA-approved JAK inhibitors fully blocked the adverse effects of IFNγ, suggesting a potentially effective strategy against human inflammatory cardiomyopathy. | |
33654396 | Nanoemulgel, an Innovative Carrier for Diflunisal Topical Delivery with Profound Anti-Infl | 2021 | PURPOSE: Rheumatoid arthritis is an autoimmune disorder that directly affects joints. However, other body organs including heart, eyes, skin, blood vessels and lungs may also be affected. The purpose of this study was to design and evaluate a nanoemulgel formulation of diflunisal (DIF) and solubility enhanced diflunisal (DIF-IC) for enhanced topical anti-inflammatory activity. METHODOLOGY: Nanoemulsion formulations of both DIF and DIF-IC were prepared and incorporated in three different gelling agents, namely carboxymethylcellulose sodium (CMC-Na), sodium alginate (Na-ALG) and xanthan gum (XG). All the formulations were evaluated in term of particle size, pH, conductivity, viscosity, zeta potential and in vitro drug release. The formulation 2 (NE2) of both DIF and DIF-IC which expressed optimum release and satisfactory physicochemical properties was incorporated with gelling agents to produce final nanoemulgel formulations. The optimized nanoemulgel formulation was subjected to three different in vivo anti-inflammatory models including carrageenan-induced paw edema model, histamine-induced paw edema model and formalin-induced paw edema model. RESULTS: DIF-IC-loaded nanoemulgel formulations yielded significantly enhanced in vitro skin permeation than DIF-loaded nanoemulgel. The nanoemulgel formulation of DIF-IC formulated with XG produced improved in vivo anti-inflammatory activity. CONCLUSION: It was recommended that DIF-IC-based nanoemulgel formulation prepared with XG could be a better option for effective topical treatment of inflammatory conditions. | |
33652341 | In-vitro and in-vivo monitoring of gold(III) ions from intermediate metabolite of sodium a | 2021 May | Real-time monitoring of drug metabolism in vivo is of great significance to drug development and toxicology research. The purpose of this study is to establish a rapid and visual in vivo detection method for the detection of an intermediate metabolite of the gold (I) drug. Gold (I) drugs such as sodium aurothiomalate (AuTM) have anti-inflammatory effects in the treatment of rheumatoid arthritis. Gold(III) ions (Au(3+)) are the intermediate metabolite of gold medicine, and they are also the leading factor of side effects in the treatment of patients. However, the rapid reduction of Au(3+) to Au(+) by thiol proteins in organisms limits the in-depth study of metabolism of gold drugs in vivo. Here we describe a luminescence Au(3+) probe (RA) based on ruthenium (II) complex for detecting Au(3+) in vitro and in vivo. RA with large Stokes shift, good water solubility and biocompatibility was successfully applied to detect Au(3+) in living cells and vivo by luminescence imaging, and to trap the fluctuation of Au(3+) level produced by gold (I) medicine. More importantly, the luminescent probe was used to the detection of the intermediate metabolites of gold (I) drugs for the first time. Overall, this work offers a new detection tool/method for a deeper study of gold (I) drugs metabolite. | |
33615102 | Elevation of Proinflammatory Cytokine HMGB1 in the Synovial Fluid of Patients With Legg-Ca | 2021 Feb | Legg-Calvé-Perthes disease (LCPD) is a childhood ischemic osteonecrosis (ON) of the femoral head associated with the elevation of proinflammatory cytokine interleukin-6 (IL-6) in the synovial fluid. Currently, there is no effective medical therapy for patients with LCPD. In animal models of ischemic ON, articular chondrocytes produce IL-6 in response to ischemic ON induction and IL-6 receptor blockade improves bone healing. High-mobility group box 1 (HMGB1) is a damage-associated molecular pattern released from dying cells. In addition, extracellular HMGB1 protein is a well-known proinflammatory cytokine elevated in the synovial fluid of patients with rheumatoid arthritis and osteoarthritis. The purpose of this study was to investigate IL-6-related proinflammatory cytokines, including HMGB1, in the synovial fluid of patients with LCPD. Our working hypothesis was that HMGB1, produced by articular chondrocytes following ischemic ON, plays an important role in IL-6 upregulation. Here, HMGB1 protein levels were significantly higher in the synovial fluid of patients with LCPD by threefold compared with controls (p < 0.05), and were highly correlated with IL-6 levels (Pearson correlation coefficient 0.94, p < 0.001, R (2) = 0.87). In the mouse model of ischemic ON, both HMGB1 gene expression and protein levels were elevated in the articular cartilage. In vitro studies revealed a significant elevation of HMGB1 and IL-6 proteins in the supernatants of human chondrocytes exposed to hypoxic and oxidative stresses. Overexpressed HMGB1 protein in the supernatants of chondrocytes synergistically increased IL-6 protein. Silencing HMGB1 RNA in human chondrocytes significantly repressed inteleukin-1β (IL-1β) gene expression, but not IL-6. Further, both IL-1β and tumor necrosis factor-α (TNF-α) protein levels in the synovial fluid of patients with LCPD were significantly correlated with IL-6 protein levels. Taken together, these results suggest that proinflammatory cytokines, HMGB1, tumor necrosis factor-α (TNF-α), and IL-1β, are significantly involved with IL-6 in the pathogenesis of LCPD. This study is clinically relevant because the availability of multiple therapeutic targets may improve the development of therapeutic strategy for LCPD. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. | |
33612100 | Interleukin-1β mediates alterations in mitochondrial fusion/fission proteins and memory i | 2021 Feb 21 | BACKGROUND: The lack of effective treatments for Alzheimer's disease (AD) reflects an incomplete understanding of disease mechanisms. Alterations in proteins involved in mitochondrial dynamics, an essential process for mitochondrial integrity and function, have been reported in AD brains. Impaired mitochondrial dynamics causes mitochondrial dysfunction and has been associated with cognitive impairment in AD. Here, we investigated a possible link between pro-inflammatory interleukin-1 (IL-1), mitochondrial dysfunction, and cognitive impairment in AD models. METHODS: We exposed primary hippocampal cell cultures to amyloid-β oligomers (AβOs) and carried out AβO infusions into the lateral cerebral ventricle of cynomolgus macaques to assess the impact of AβOs on proteins that regulate mitochondrial dynamics. Where indicated, primary cultures were pre-treated with mitochondrial division inhibitor 1 (mdivi-1), or with anakinra, a recombinant interleukin-1 receptor (IL-1R) antagonist used in the treatment of rheumatoid arthritis. Cognitive impairment was investigated in C57BL/6 mice that received an intracerebroventricular (i.c.v.) infusion of AβOs in the presence or absence of mdivi-1. To assess the role of interleukin-1 beta (IL-1β) in AβO-induced alterations in mitochondrial proteins and memory impairment, interleukin receptor-1 knockout (Il1r1(-/-)) mice received an i.c.v. infusion of AβOs. RESULTS: We report that anakinra prevented AβO-induced alteration in mitochondrial dynamics proteins in primary hippocampal cultures. Altered levels of proteins involved in mitochondrial fusion and fission were observed in the brains of cynomolgus macaques that received i.c.v. infusions of AβOs. The mitochondrial fission inhibitor, mdivi-1, alleviated synapse loss and cognitive impairment induced by AβOs in mice. In addition, AβOs failed to cause alterations in expression of mitochondrial dynamics proteins or memory impairment in Il1r1(-/-) mice. CONCLUSION: These findings indicate that IL-1β mediates the impact of AβOs on proteins involved in mitochondrial dynamics and that strategies aimed to prevent pathological alterations in those proteins may counteract synapse loss and cognitive impairment in AD. | |
33037966 | Src Family Protein Kinase Controls the Fate of B Cells in Autoimmune Diseases. | 2021 Apr | There are more than 80 kinds of autoimmune diseases known at present, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc), inflammatory bowel disease (IBD), as well as other disorders. Autoimmune diseases have a characteristic of immune responses directly attacking own tissues, leading to systematic inflammation and subsequent tissue damage. B cells play a vital role in the development of autoimmune diseases and differentiate into plasma cells or memory B cells to secrete high-affinity antibody or provide long-lasting function. Drugs targeting B cells show good therapeutic effects for the treatment of autoimmune diseases, such as rituximab (anti-CD20 antibody). Src family protein kinases (SFKs) are believed to play important roles in a variety of cellular functions such as growth, proliferation, and differentiation of B cell via B cell antigen receptor (BCR). Lck/Yes-related novel protein tyrosine kinase (LYN), BLK (B lymphocyte kinase), and Fyn are three different kinds of SFKs mainly expressed in B cells. LYN has a dual role in the BCR signal. On the one hand, positive signals are beneficial to the development and maturation of B cells. On the other hand, LYN can also inhibit excessively activated B cells. BLK is involved in the proliferation, differentiation, and immune tolerance of B lymphocytes, and further affects the function of B cells, which may lead to autoreactive or regulatory cellular responses, increasing the risk of autoimmune diseases. Fyn may affect the development of autoimmune disorders via the differentiation of B cells in the early stage of B cell development. This article reviews the recent advances of SFKs in B lymphocytes in autoimmune diseases. | |
32810618 | De novo transcriptomic and proteomic analysis and potential toxin screening of Mesobuthus | 2021 Jan 30 | ETHNOPHARMACOLOGICAL RELEVANCE: As well-known medicinal materials in traditional Chinese medicine, scorpions, commonly called as Quanxie () in Chinese, have been widely used to treat several diseases such as rheumatoid arthritis, apoplexy, epilepsy and chronic pain for more than a thousand years. Not only in the ancient times, the scorpions have also been recorded nowadays in the Pharmacopoeia of the People's Republic of China since 1963. AIM OF STUDY: This study aims to explore the differences in composition of the venom of scorpions from different regions by using the method of transcriptomics and proteomics. MATERIALS AND METHODS: Whole de novo transcriptomes, proteomics and their bioinformatic analyses were performed on samples of the scorpion Mesobuthus martensii and their venoms from four different provinces with clear geographical boundaries, including Hebei, Henan, Shandong and Shanxi. RESULTS: The four captured samples had the same morphology, and the conserved CO-1 sequence matched that of M. martensii. A total of 141,003 of 174,653 transcripts were identified as unigenes, of which we successfully annotated 51,627 (36.61%), 21,970 (15.58%), 7,168 (5.08%), and 45,263 (32.10%) unigenes with the NR, GO, KEGG and SWISSPROT databases, respectively, while a total of 427 proteins were collected from the protein extracted from venoms. Both GO and KEGG annotations exhibited only slight differences among the four samples while the expression level of gene and protein was quite different. A total of 249 toxin-related unigenes were successfully screened, including 41 serine proteases and serine protease inhibitors, 39 potassium channel toxins, 38 phospholipases, 16 host defense peptides, 9 metalloproteases, and 50 other toxins. Although the toxin species were similar among the four samples, the gene expression of each toxin varied considerably, for example, the scorpion from HB province has the most abundant expression quality in sequences c48391_g1, c55239_g1 and c47749_g1 while the lowest expressions of c51178_g1, c62033_g3 and c63754_g2. CONCLUSION: The regional differences in the transcriptomes and proteomes of M. martensii are mainly from expression levels e.g. toxins rather than expression species, of which the method can be further extended to evaluate the qualities of traditional Chinese medicines obtained from different regions. | |
34919989 | Immunosuppressive effect of Columbianadin on maturation, migration, allogenic T cell stimu | 2022 Mar 1 | ETHNOPHARMACOLOGICAL RELEVANCE: Angelicae pubescentis radix (APR) has a long history in the treatment of rheumatoid arthritis (RA) in China. It has the effects of dispelling wind to eliminate dampness, removing arthralgia and stopping pain in the Chinese Pharmacopeia, but its mechanisms was unclear. Columbianadin (CBN) was one of the main bioactive compounds of APR, and has many pharmacological effects. But the immunosuppressive effect of CBN on DCs and the potential mechanism needed to be explored. AIM OF THE STUDY: The study was aimed to clarify the immunosuppressive effect of CBN on maturation, migration, allogenic T cell stimulation and phagocytosis capacity of TNF-α induced DCs. MATERIALS AND METHODS: Bone marrow-derived DCs were obtained and cultured from C57BL/6 mice in accordance with protocol. The phenotypic study (CD11c, CD40, CD80, CD86 and MHC Ⅱ) were measured by flow cytometry. FITC-dextran were uptaked by DCs and the change of endocytosis activity were mediated by acquired mannose receptor. Transwell chambers were used to detect the migration ability of DCs. Mixed leukocyte reaction (MLR) assay was used to detect the allostimulatory ability of CBN on TNF-α stimulated DCs. The secretion of cytokines and chemokines was measured by ELISA Kit. TLRs gene and MAPKs/NF-κB protein expression were checked by qRT-PCR and Western blot. RESULTS: CBN inhibited the maturation of TNF-α-induced DCs while maintaining phagocytosis capabilities. Additionally, CBN inhibited the migration of TNF-α stimulated DCs, which related to reduce the production of chemokines (MCP-1, MIP-1α). Notably, CBN could suppress the proliferation of CD4(+)T cells by inhibiting DCs maturation, and decrease the proinflammatory cytokines IL-6 production. Furthermore, CBN inhibited mRNA expression of TLR2, TLR7 and TLR9 in TNF-α-activated DCs. Meanwhile, the phosphorylation of p38, JNK1/2 and NF-κB protein were significantly inhibited in CBN treated DCs. CONCLUSIONS: These findings provided novel insights into the pharmacological activity of CBN. They also indicated that inhibition DCs maturation owning to the immunosuppressive effect of CBN. CBN was expected as a potential immunosuppressant and TLRs/MAPKs/NF-κB pathway may be an important mechanism for CBN's immunosuppressive activity. | |
34883678 | Nano Drug Delivery Platforms for Dental Application: Infection Control and TMJ Management- | 2021 Nov 29 | The oral cavity is an intricate environment subjected to various chemical, physical, and thermal injuries. The effectiveness of the local and systemically administered drugs is limited mainly due to their toxicities and poor oral bioavailability that leads to the limited effectiveness of the drugs in the target tissues. To address these issues, nanoparticle drug delivery systems based on metals, liposomes, polymeric particles, and core shells have been developed in recent years. Nano drug delivery systems have applications in the treatment of patients suffering from temporomandibular joint disorders such as preventing degeneration of cartilage in patients suffering from rheumatoid arthritis and osteoarthritis and alleviating the pain along with it. The antibacterial dental applications of nano-drug delivery systems such as silver and copper-based nanoparticles include these agents used to arrest dental caries, multiple steps in root canal treatment, and patients suffering from periodontitis. Nanoparticles have been used in adjunct with antifungals to treat oral fungal infections such as candida albicans in denture wearers. Acyclovir being the most commonly used antiviral has been used in combination with nanoparticles against an array of viral infections such as the herpes simplex virus. Nanoparticles based combination agents offer more favorable drug release in a controlled manner along with efficient delivery at the site of action. This review presents an updated overview of the recently developed nanoparticles delivery systems for the management of temporomandibular joint disorders along with the treatment of different oral infections. | |
34710556 | Qianghuo Shengshi decoction exerts anti-inflammatory and analgesic via MAPKs/CREB signalin | 2022 Feb 10 | ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese Medicine Qianghuo Shengshi decoction (QSD) is widely used in the treatment of nervous headache, rheumatoid arthritis, sciatica, allergic purpura, and other clinical diseases in China. However, the underlying mechanisms of its anti-inflammatory and analgesic effects has not been elucidated. AIM OF THE STUDY: The aim of this study was to confirm the anti-inflammatory and analgesic effects and the underlying mechanism of QSD in vivo. In addition, this study was also to isolate and analyze the main active components of QSD by high performance liquid chromatography (HPLC). MATERIALS AND METHODS: In this study, the acetic acid writhing test, hot plate test and ear swelling test and formalin test were carried out to explore the anti-inflammatory and analgesic effects of QSD. The doses were set to 7.8 g/kg, 15.6 g/kg and 31.2 g/kg body weight. Western blot was utilized to study further possible mechanisms of QSD. Moreover, the HPLC method was used to isolate and identify the components in the extraction of QSD. RESULTS: Twelve characteristic peaks were recognized in the HPLC spectrum, which all were the known compounds. The QSD exhibited dose-dependent effects in anti-inflammatory and analgesic aspects. Compared with model group, the writhing times of in groups of different doses of QSD (15.6 g/kg and 31.2 g/kg (oral administration = p.o.)) were reduced by 33.0% and 45.8% and indicated the QSD showed significant (p < 0.05) peripheral analgesic effect. QSD ((31.2 g/kg), p.o.) showed significant(p < 0.05) analgesic effect in the hot plate test. Inhibition rates of QSD ((15.6 g/kg and 31.2 g/kg), p.o.) in ear swelling test induced by p-xylene were 27.5% and 54.6% and demonstrated the significant (p < 0.05) anti-inflammatory activity. QSD ((31.2 g/kg), p.o.) significantly (p < 0.05) reduced times of paw licking in formalin test, and its inhibition rates were 34.3% and 28.0% in Phase I and Phase Ⅱ response, respectively. Western blot results showed that QSD inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) protein and cAMP response element-binding protein (CREB). CONCLUSIONS: These results of this study undoubtedly confirmed that QSD expressed obvious analgesic and anti-inflammatory activities. Anti-inflammatory and analgesic effects of QSD may be achieved by regulating the MAPKs protein and further regulating the expression of CREB. In all, QSD may play an anti-inflammatory and analgesic role through a variety of active ingredients. |